

Lev Tours
Dr. Michael Leverington - Sponsor

David Failing - Mentor

Members
Erik Clark

Kyle Savery
Alexis Smith
David Robb

Ariana Clark-Futrell

Requirements Specification Document
11/24/2020

Version 1.2

Overview
This document lays out the requirements, risks, and timeline for “Thirty Gallon Robot Part III:

The Smiling Tour Guide”. The requirements are split into 2 categories, functional and
non-functional.

1

1. Introduction…………………………………………………………………..2

2. Problem Statement……...…………………………………………………..3

3. Solution Vision………...…………………………………………………….3

4. Project Requirements...…………………………………………………… 4

4.1 Functional Requirements…………………………………………………….... 4

4.2 Non-Functional Requirements………………………………………...……… 7

5. Potential Risks……………………………………………………………... 8

6. Project Plan..……………………………………………………………….... 8

7. Conclusion...………………………………………………………………... 11

8. References………………………………………………………………….. 13

9. Original Signed Cover Sheet……………………………………....……...14

2

1. Introduction
In the field of computer science, robotics is capable of increasingly complex tasks, and the
necessary hardware for these tasks has become far more accessible in recent years. As a
result, the costs associated with these materials have also decreased, allowing for a greater
number of individuals and organizations to take part in the research and development of mobile
robotic platforms. Most significantly, educational organizations can give students the opportunity
to interact with robotics either from a mechanical or programmable standpoint. To take full
advantage of mobile robotics, one of the main goals of our project, “Thirty Gallon Robot Part III,
The Smiling Tour Guide”, designed by our sponsor Dr. Michael Leverington, is to demonstrate
that an institution's budget for robotics can be further reduced, and used more effectively, by
utilizing inexpensive materials. For Dr. Leverington’s robot, one of the most inexpensive
components is the thirty gallon barrel that all of the other components are built around. When
this project is complete, the robot will be an example of how instructors can get students
involved in the world of robotics, which could lead to an expansion of the field.

Beyond computer science the industry of robotics is involved with numerous fields such as
mechanical and electrical engineering, medicine, agriculture, and manufacturing. In 2019, the
global robotics industry was valued at $62.45 billion [1]. A subset of this industry that is of
particular relevance to our project is known as mobile robotics. This field is responsible for
creating robots that can move in 3 dimensional space without the need of human assistance.
The market size for mobile robotics was approximately $9.34 billion in 2018 [2].

The Thirty Gallon Robot project is in its third year of development. The first team created the
foundation for Robot Assisted Tours (R.A.T) by programming the robot to respond to commands
from an Xbox controller. The second team built upon R.A.T by creating a way for the robot to
generate its own maps by navigating around the building. A stretch goal for the second team
was to develop a framework for Wi-Fi localization capable of directing the robot in a building, but
due to the 2020 COVID-19 pandemic they were unable to test their design within the
engineering building and so that development was not completed at the time. Therefore, this
task now falls upon our team. Wi-Fi localization will allow for the robot to navigate on its own
throughout a building without the requirement of the Xbox controller. Requiring user control
defeats the robot’s purpose of being an automated tour guide.

To complete this project’s third stage of development, our team consists of 5 members, a
mentor and a sponsor:

● Dr. Michael Leverington, Team Sponsor
● David Failing, Team Mentor

● Erik Clark, Team Lead
● Ariana Clark-Futrell, Team Communications/Recorder
● David Robb, Team Release Manager
● Alexis Smith, Team Coder
● Kyle Savery, Team Architect

3

2. Problem Statement
Dr. Leverington is a lecturer at Northern Arizona University (NAU), and cares deeply about
giving students the best education possible. Part of this goal is to open new doors for students
to follow their interests or expose them to promising new fields they may know little about. Dr.
Leverington's robot is made to show students the possibilities of mobile robotics and
demonstrate to other instructors that it can be done affordably. In addition to being low cost the
robot aims to act as a tour guide for people exploring buildings. Those buildings will be located
on NAU campus, starting with the engineering building and then expanding to other buildings in
the future.

Currently, our sponsor's robot is not able to navigate buildings without human assistance, which
is a critical aspect of an autonomous tour guide. Dr. Leverington did not want our team to use
navigational tools such as cameras or GPS for his design and instructed us to only use nearby
routers for navigation. The need for router based localization came from the fact that the robot is
able to create its own building map, but it is unable to locate itself on the map.

To solve this problem there are a few key points that our software must cover:

● The software must be modular and independent of the robot.
● The software must only rely on the signal strength of nearby routers.
● The product must include a Graphical User Interface (GUI) to allow the users to request

destinations within the building.

3. Solution Vision
In order to fulfil Dr. Leverington’s project vision, we must create a software product that will tell
the robot where it is and where it needs to go in a building. This software takes R.A.T. a
necessary step closer to becoming a fully autonomous tour guide robot.

To solve the previously mentioned problem points, our solution must incorporate the following:

● A system that can be run and tested independently of the robot on a laptop.
● A system that takes in Wi-Fi signals from available routers.
● A system that can navigate between any two accessible points in the building.
● A GUI to display the status of the map and accept user requests.

Partly due to COVID-19, our team will develop the location software module independently of
the robot in order to support modularity, and allow for efficient testing that does not rely on the
physical presence of the robot. The software will be built on a laptop at first to demonstrate its
functionality. If there is sufficient time remaining after we complete this task then we may be
able to move on to a stretch goal where we will port the software to a smartphone or tablet.

4

An important piece of our software will use routers and their respective signal qualities to
calculate the direction the device should move to reach its destination. It is important that when
this data is retrieved we base our calculations on average signal strength along with tolerances
since the incoming data will not always have the same strength even when retrieved from the
same location. Using these stable data points we will create a navigational system that works
within the building.

Finally, a GUI must be created that can display all useful information. Useful information in this
context would be the building map, device’s location and possible destination points with
respect to the map.

4. Project Requirements
The following sections will cover our project’s functional and non-functional requirements in
detail. Laying out these requirements is a crucial step to creating a strong foundation from which
we can develop our solution. Since the beginning of this project, our team has been meeting
with Dr. Leverington to precisely determine what he expects our system to accomplish which
guides us in being as specific as possible for our requirements.

4.1 Functional Requirements
The functional requirements of a project are related to fundamental behaviors of the system.
These behaviors define what a system does or does not do. Our two main functional
requirements are that our software must navigate itself through a building and communicate
with a user via a GUI.

The navigation component of our product will be focused on three aspects of movement through
3-dimensional space, data capture, localization, and building traversal. Furthermore, obtaining
data from nearby routers, calculating position, and then determining which path will lead to the
destination each have their own functional requirements which are broken down as follows.

● Data Capture
○ Get Wi-Fi Signals

■ Our software must read in sufficient amounts of relevant network data and
subsequently parse through that information before it can begin
calculating its position. This stage will serve as the setup or training for
the software since each building’s routers will have different signals as
well as locations. On setup, the software will be taken throughout a
building to each destination point and then read in samples of the signal
data to learn what nearby routers’ signals should be when it returns to this
position. After the training phase, the software will not need to capture
network data as frequently and only when it has to update its position.

5

○ Storage of Past Data Points
■ When a building’s router signals are captured through Relative Signal

Strength Indicator (RSSI), our software must also store these values in an
accessible data structure which will be used on subsequent calculations.

○ Get Router Addresses
■ Part of parsing through our software’s acquired signal data is ensuring

that each router has its own identification to be distinguished from
adjacent devices. The Python library, RSSI, attaches each router’s Media
Access Control (MAC) address, which is a unique identifier assigned to
network interfaces, to its signal output. As such these addresses, in
addition to signal quality, will be used to determine the software’s location.

○ Get Signal Quality
■ Since RSSI already brings in the data our software requires, another

important aspect of capturing signal quality is that we must determine
which signals to use. Some signals may be too unstable, either due to
physical distance between our software and the device or possibly the
device itself, to be used in consistent calculations. Hence, our software
will ignore these signals and/or put tolerances on them to negate any
minor fluctuations.

● Localization
○ Comparison of Current Router Signals

■ After reliable router signals have been acquired and stored, the process
for calculating position will involve comparing current captures of signal
data to these stored values. It is important this process is efficient since
our software must be fast enough to match a human’s walking speed,
which will be discussed further in non-functional requirements.

● Building Traversal

○ Grid System
■ To prevent our software from considering physical obstacles as valid

paths, it will need to implement a grid as its view of the building layout.
This grid will overlay onto the map of the building and its function will be
to keep track of the signal ranges that our software must be within to not
hit an object. The grid ‘lines’ will be centered along each hallway the robot
is allowed to traverse. This grid will also reflect distances between points,
or nodes, in the building which will be recorded during the training phase.

○ Point to Point Navigation

■ Once our software is able to know what destination point it is at, it needs
to be able to calculate the necessary movements to reach any other
destination point. Since the previously mentioned grid system includes

6

nodes throughout the building, their signal qualities, and respective
distances our software must calculate the most efficient path between
these nodes.

With the fulfilment of our project’s navigation component, the next functional requirement
concerns our software’s GUI. The purpose of this interface is to streamline the software’s
interactions with both user’s simply taking advantage of the tour capability or user’s performing
setup operations in a new building. There are two main components of our planned GUI, image
manipulation, and the ability to communicate with a user which are outlined below.

● Image Manipulation
○ Accept an Image File

■ The robot is already able to generate its own maps, but lacks the ability to
make calculations based on this and router signals. Therefore, our
software must be able to accept this image file of the building map to
allow for manipulation.

○ Edit Image File
■ Our product must overlay a grid onto the generated map. Once this is

completed the software will be able to translate user requested
destinations based on the grid’s nodes to actual locations on the map.
This image of the requested destination can then be displayed to the
user. Additionally, this GUI must scale the map’s image depending on the
level of zoom the user decides to view the building layout.

● Communicate with the User (Backend and Frontend)
○ Backend communication

■ Backend communication is primarily related with the software’s setup in a
new area. Interacting with the GUI, the backend user would input all
destination points and turns within a building as the grid’s nodes. Then
the distances between each node and its closest neighbors would also be
added. In this case, closest would define the nodes that the software can
reach without having to make any turns. The backend user can flag
specific destination points as having significant value and to be included
in a list of tour spots.

○ Frontend communication

■ Frontend users, or the ones who have no knowledge of the inner
workings of our software and simply want to use the service, must be able
to request destinations within the building. These destinations can be
either a single destination the user wants to be directed to or the request
can be made for the software to take the user to all points within the list of
tour spots.

7

4.2 Non-Functional Requirements
The non-functional requirements of a project are requirements that specify a tangible set of
criteria which performance can be objectively tested against. Similarly to functional requirements
our software’s non-functional requirements can be split up into two categories, navigation and
the GUI.

● Navigation
○ Speed

■ An important aspect of Dr. Leverington’s robot is that it is able to move
quickly enough to match the average walking speed of a human. Clearly,
the robot would not be an effective tour guide if it moved too quickly or
slowly. In relation to our software, this means it must calculate its position
and where it must move fast enough so that the device the software is
running on can be moved between 3 and 4 mph and still produce
accurate data [3].

○ Definition of Success
■ When a destination point is requested the software will attempt to

navigate the building and reach this point. We consider it a success if the
software can get within 2 meters of the target. For example, if the user
requests to be taken to room 102, then this task will be a success if the
software is no more than 2 meters from the doorway after it traverses the
building.

○ Success Rate
■ Furthermore, as long as the software can achieve a success in at least

95% of trial runs the overall product’s navigation component will be
considered a success.

○ Shortest Path Between Points
■ We will likely use a simple process such as Dijkstra's Shortest Path First

algorithm, which as the name implies finds the shortest path between two
nodes in a graph. In this context, the ‘graph’ is our grid.

● GUI
○ When a user is interacting with the software via the GUI, we require that a

destination request can be made within 2 clicks and any necessary typing to
input the destination’s title. Specifically, the user should be able to click on the

8

search bar, input their desired destination, and then click enter for the software to
begin directing them around the building.

5. Potential Risks
As with any navigation system the project has some inherent risks to it. The main risk we have
is that our software may guide the robot off course and have it run it to objects such as walls,
ledges, doors, or people. In terms of substantial damages the system could cause to itself or the
object it encounters, the risk is somewhat low. This is due to the fact the system will only be
moving between 3 and 4 mph at any given time. Still, the one instance where the robot running
off course could prove truly dangerous is if it directs itself into a stairwell, at which point it would
easily cause damage to its hardware and any individual it may contact. However, in terms of
effective functionality this is our highest risk since an autonomous tour guide can not have its
followers constantly having to pick it up and place it on the correct path. Another consequence
of running off course is that the individual it was guiding may now also be lost in the building,
which further undermines the tour functionality.

The building the software is operating in may occasionally have temporary hazards blocking
various hallways. This risk is quite low because while these kinds of hazards may appear often
(i.e. wet floors signs), the remedy is quite simple. Anytime a new hazard of this type pops up, a
backend user could temporarily update the robot’s map to consider this hazard as a wall and
calculate alternate routes. Since our software solely relies on Wi-Fi signals and user inputs
there is no other possible remedy as our system is not allowed to incorporate cameras to
actively avoid hazards.

Another moderate risk we must take into account is how our software will function if a router
changes position, is removed entirely, or whenever all Wi-Fi signals in the building go down. For
the latter, there is nothing our software can do to continue operating since its entire system is
based on functional Wi-Fi signals. For routers that are removed the software’s signal data
storage would be updated to reflect the absence of the router. Lastly, if a router happens to be
shifted in a building (which should rarely happen) then the backend user will need to take the
software through the training phase again to maintain accurate point to point traversal.

6. Project Plan
Once our functional and non-functional requirements were laid out we were able to generate a
definitive and ordered plan for the remainder of this project to ensure we have ample time to
meet all requirement criteria (see Figure 6.1 for a Gantt chart).

1. We must scan and analyze Wi-Fi data from several points in the engineering building at
NAU as a first step toward our initial prototype.

2. Once we are able to capture these Wi-Fi signals we must begin capturing numerous sets
of data to get an accurate picture of how the Wi-Fi signals operate.

3. The initial prototype will be constructed which uses the stored data on Wi-Fi signals to
determine if it is at one of two points in the building.

9

4. After the initial iteration of our design is functional, we will continue collecting data on the
first floor so our software can determine if it is at one of any possible points.

5. At this point, we would begin creating our GUI and overlaying a grid onto the building's
map.

6. Once the grid overlay is completed, our team is ready to begin solving the problem of
navigation.

7. The first solution for navigation we plan to derive is calculating the shortest path between
two points.

8. After our software is operational on the first floor of the engineering building, we would
then expand its functionality to include all of the floors.

9. Finally, we would take our software to a new and untested building to prove the validity
of our design.

10

Figure 6.1

A Gantt chart depicting our plan for the remaining project duration.

11

7. Conclusion
The capabilities of mobile robotics continue to expand and the societal problems that can be
solved by them are expectedly growing. As a result, mobile robotics is an increasingly valuable
field and the more people who can get involved early on expands the subject area both further
and faster. Our project, “The Thirty Gallon Robot”, seeks to demonstrate affordable ways that
educational institutions can get students involved with robotics. By contributing our software to a
robot that is as inexpensive as possible, our team (and previous teams) believe that we can
show other instructors that getting their students involved with robotics is not only possible, but
truly rewarding.

The specific problem our team is working to solve is designing, developing and delivering a
functioning software product that utilizes the signal strengths of nearby routers to navigate a
building. This problem exists as our team sponsor, Dr. Leverington, has a robot in its third year
of development that does not currently have a way to autonomously navigate the engineering
building at Northern Arizona University. Our solution to this problem involves fulfilling several
functional and non-functional requirements that were specified through discussions with Dr.
Leverington.

The functional requirements of our software product begins with the ability to capture
information regarding Wi-Fi. This information must include the current Wi-Fi signal strength from
nearby routers which will be used to determine the software’s location (localization) by
comparing current signal strengths with previously captured samples which represent points
throughout the building. Once the software is able to distinguish itself between any two listed
points in the building, it must be able to calculate which direction to move in order to reach a
point from any other point. After the software is capable of traversing the building, it is important
that relevant information is displayed to the user. This relevant information will be the software’s
current location and possible destination points which will be communicated to the user via a
map shown on a Graphical User Interface (GUI). This GUI must be able to then accept user
inputs from either backend or frontend users. The respective inputs expected from these users
would be commands to set up the robot in a new building or requests for the software to direct
them to a new location.

The non-functional requirements for our software are centered around how quantitatively
efficient our software is expected to be. The touring robot is expected to move at the average
walking speed of a human, so our software must produce expected output even when moving
around a building at 3 - 4 mph. The expected output will be rated on the fulfilment of a
destination request. A request is defined to be fulfilled if the software can guide the user to
within 2 meters of the requested destination. Furthermore, this operation must be successful for
at least 95% of requests. Our software must also calculate the shortest path between any two
points in the building to be as fast as possible to not waste the user’s time. In relation to our
software’s GUI, we require that a user must be able to input a destination request within 2 clicks
and any accompanying typing to spell out the destination’s title.

12

When developing our solution we must also take into account potential risks. For our project,
there are a few issues that must be taken into account.

● The software guiding the robot off course which could result in damage to itself and other

objects it comes into contact with.

● The software being unaware of temporary hazards within the building.

● The software’s functionality being reduced due to router outages.

Laying out definitive requirements is absolutely critical to the timely success of any software
project. After constructing this document, our team has a well defined schedule for the duration
of this project and every member knows exactly when tasks must be completed. As a result we
are confident we can produce a software product to the satisfaction of our sponsor, Dr.
Leverington.

13

8. REFERENCES
[1] Pramod, B., & Shadaab, K. (2020, October). Robotics Technology Market Size, Share

and Analysis: Forecast - 2027. Retrieved November 04, 2020, from
https://www.alliedmarketresearch.com/robotics-technology-market

[2] Rahul, K. (2019, January). Mobile Robotics Market Size, Industry Analysis and

Applications by 2026. Retrieved November 04, 2020, from
https://www.alliedmarketresearch.com/mobile-robotics-market

[3] Cronkleton, Emily (2019, March). What Is the Average Walking Speed of an Adult?

Retrieved November 06, 2020, from
 https://www.healthline.com/health/exercise-fitness/average-walking-speed

https://www.alliedmarketresearch.com/robotics-technology-market
https://www.alliedmarketresearch.com/mobile-robotics-market
https://www.healthline.com/health/exercise-fitness/average-walking-speed

14

9. Original Signed Cover Sheet

